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A large  number  of publications a re  devoted to the behavior  of m a t e r i a l s  under  dynamic loads.  Fo r  
example ,  the effect  of the s t r a in  ra te  on the mechanica l  p rope r t i e s  of me ta l s  [1, 2], the delay of yield under  
shor t -dura t ion  loads [3], the dependence of s t r e s s e s  on the s t ra in  ra te  [4,5], as well  as the effect  of dynam-  
ic loading on the s ta t i s t ica l  p rope r t i e s  of meta l s  have been invest igated.  

In this work we p resen t  ce r ta in  resu l t s  of an investigation,  by the polar ized- l igh t  method in combina-  
tion with h igh-speed  c inematography,  into the s t r e s s  field in the vicinity of a s ta t ionary  m a c r o c r a c k  sub-  
jected to a s t r e s s  wave.  

The invest igat ion is c a r r i e d  out on p o l y m e r s .  The diffract ion phenomenon of the p r e s s u r e  wave at the 
t ip of a s ta t ionary  m a c r o c r a c k  is es tabl i shed exper imenta l ly .  The diffract ing wave propagates  against  the 
original  wave f rom the opposite bank of the c rack .  The s t r e s s  concentra t ion is de te rmined  by the angle of 
en t ry  of the wave into the plane of c r ack .  The l a rge s t  s t r e s s  concentrat ion occurs  for  min imum angles of 
incidence.  This  means  that d i sp lacements  of par t i c les  of the media  d i rec ted  along the c rack  play the m a j o r  
ro le  in the format ion  of the s t r e s s  field at the t ip of the c rack .  

1. Descr ip t ion  of Exper imen t s .  The d i ag ram of the instal lat ion used for  expe r imen t s  is shown in 
Fig.  1. In this d iagram:  1, pulsed light source ;  2, condensing lens;  3, po la r i ze r ;  4, quar te r  wave plate;  5, 
t es tp iece ;  6, supply e l ec t rodes ;  7, tube with water ;  8, quar te r  wave plate;  9, ana lyzer ;  10 lens of cine 
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Fig. 2 

camera ;  11, breaking wire;  12, high-voltage rect i f ier ;  13, delay line; 14, high-voltage rect i f ier ;  15, cine 
c a m e r a  SFR-1.  Capaci tors  are  charged by means of two high-voltage rec t i f ie rs  via the charging r e s i s to r s  
R I and R 3. The value of the charging voltage is regulated by au to t ransformers  f rom the instruments  Kt 
and K 4, After  charging the capaci tors  C I and C~ up to the source voltage (control is effected by means of 
the ki lovol tmeters  K 2 and K3) , the high-speed SFR-1 cine camera  is switched on. The d i scharger  P is f ired 
by a high-voltage pulse fed from the control  desk. Here discharge of the capaci tor  C 2 takes place through 
a wire with a d iameter  of 0.02 ram. As a result  the wire breaks ,  and a shock wave through a column of liq- 
uid is t ransmi t ted  to the tes tpiece.  By means  of the t r ans fo rmer  T2, which has the supply line of the b reak -  
ing wire as its p r im a ry  winding, simultaneously with the break a pulse is fed through the delay line to the 
high-voltage t r a n s f o r m e r  Tl,which initiates the operation of a powerful light source .  The delay line effects 
synchronizat ion of operat ion of the tube L 1 with the instant when the wave proceeds into par t  of the t e s t -  
piece which is to be cine-f i lmed.  In the role of a pulsed light s0urceanISSh-100-3  tube, based in the focus 
of the condensing lens, is used.  The small  dimensions of its luminous element enable us to obtain a p r a c -  
t ical ly paral le l  pencil of r ays .  The flash energy is more  than 3000 J;  its duration is 200-250 ttsec. 

The tes tpieces  were made f rom Plexiglas in the form of c i rcu la r  discs having a d iameter  of 180 mm 
and thickness of 18 ram. Then incisions were made on the tes tpieces;  a c rack  was produced by a slight im-  
pact by a knife at the ver tex of these incisions.  To remove the internal s t r e s ses ,  the testpieces were an- 
nealed for 5-6 days and nights at a tempera ture  of 120~ with subsequent slow cooling at a rate of 5~ per  h. 

2. Analysis of Exper iments .  The tes tpieces  thus prepared  were subjected to impulsive loading by a 
p res su re  wave. The possibil i ty of orienting the crack relative to the direct ion of motion of the wave en-  
abled us to experimental ly investigate the s t r e ss  field at the ver tex of the c rack  for var ious angles of attack 
of the wave. The f rames  of cine film of the interaction of the wave and the crack,  obtained at the rate of 
taking 480,000 f rames per  sec,  are presented in Fig. 2. An analysis of them shows that, f rom the instant 
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Fig .  3 

when the wave goes out to the bank  of the c r ack ,  a f ield of dynamic  
s t r e s s e s  is  g r a d u a l l y  f o r m e d  at i ts  ve r t e x .  The va lue  of s t r e s s e s  
depends on the angle of inc idence  of the wave.  The value  of e n e r g y  
W s t o r e d  in  the  ne ighborhood  of the c r a c k  t ip ,  dependent  on the 
angle of inc idence  of the wave,  is  shown in  F ig .  3. The value in a 
cons t an t  vo lume was computed  f rom the e x p r e s s i o n  

W -- (~'~176 E ntzsi (2.1) 
t=o 

where  t is  the t h i c kne s s  of the t e s tp i ece ,  n is  the f r inge  n u m b e r ,  
T~ ~ i s  the f r inge  value  u n d e r  dynamic  loading,  E is  the modulus  
e l a s t i c i t y ,  and s is  the a r e a  of the f r i nge .  

(The ca l cu l a t i ons  w e r e  c a r r i e d  out for  the t ime  75 ~sec ,  m e a s u r e d  f rom the i n s t a n t  when the wave 
went  out to the v e r t e x  of the c r a c k ;  the f r a m e s  before  f r a c t u r e  c o r r e s p o n d  to th i s  t ime . )  

F r o m  the g raph  we see  tha t  the m a x i m u m  value of the e n e r g y  and the m a x i m u m  s t r e s s  c o n c e n t r a t i o n  
a r i s e  when the wave p ropaga tes  to only one of the banks  of the c r a c k  (fl = 0). In  th is  case  the s t r e s s  c o n c e n -  
t r a t i o n  r e a c h e s  a va lue  which exceeds  the u l t i m a t e  s t r eng th ;  as a r e s u l t ,  g rowth  of the c r a c k  takes  place at 
an angle of 80-85 ~ to i ts  o r i g ina l  d i r e c t i o n .  

When the wave fa l l s  at an angle  to  the  p lane  of the c r a c k ,  the s t r e s s e s  at i t s  v e r t e x  d e c r e a s e ,  a s s u m -  
ing the m i n i m u m  va lue  at fl = 90 ~ It  should  be noted that  when the wave t r a v e l s  along the c r a c k ,  but  in  the 
opposi te  d i r ec t i on  (fl= 180~ the s a m e  c o n c e n t r a t i o n  does not  oc c u r  as in the c a s e  where  the d i r e c t i o n s  of 
t he i r  mo t ions  co inc ide ,  i .e . ,  when fi = 0. Apparen t ly  this  is expla ined  by a u n i f o r m  ene rgy  d i s t r i b u t i o n  b e -  
tween the banks  of the c r a c k  and, t h e r e f o r e ,  the s t r e s s  ro se t t e  is s y m m e t r i c  and weak.  

If the wave is  d i r e c t e d  at an angle of 30 ~ o r  120 ~ , c o n s i d e r a b l e  s t r e s s  c o n c e n t r a t i o n s  o c c u r  at the 
v e r t e x  of the c r a c k  r e g a r d l e s s  of i t s  d i r e c t i o n .  

Thus ,  i m p o r t a n t  and dange rous  in  r e l a t i o n  to the f r a c t u r e  wil l  be the ca se  where  the wave p ropaga tes  
a long one of the banks  of the c r a c k .  F o r  th is  case  e x p e r i m e n t s  we re  c a r r i e d  out on s t e e l s ,  and an ana ly s i s  
was conducted  into the d i s t r i b u t i o n  of the m a x i m u m  s h e a r  s t r e s s e s  ob ta ined  on P l e x i g l a s .  

Steels  65G and ShKh-15 of s t a n d a r d  compos i t i on  were  i nves t iga t ed .  In o r d e r  to obta in  a b r i t t l e  s ta te ,  
t e s t p i e c e s  in the f o r m  of 300 x 300 x 10 m m  3 p la tes  with an i n c i s i o n  were  sub jec ted  to h a r d e n i n g  (850-860~ 
in  hot oil  (the t e m p e r a t u r e  of the oil was 70~ with a subsequen t  t e m p e r i n g  at T = 180~ for  two h o u r s .  As 
a r e s u l t  of the t h e r m a l  s t r e s s e s  ha rden ing  c r a c k s  (l = 7-10 ram) were  f o r m e d  at the t ip  of the i nc i s i on .  
When an i m p a c t  was  appl ied to one of i t s  s ides ,  the e m b r y o n i c  c r a c k s  changed t h e i r  d i r e c t i o n  of p ropaga t ion  
[in F ig .  4 the s p e c i m e n  f r a c t u r e s  of P l e x i g l a s  (a) and s tee l  (b) a re  shown].  It i s  c h a r a c t e r i s t i c  that  the angle 
of the c r a c k  grown in  s t ee l  changed in  the s ame  way as in  P l e x i g l a s  (i .e. ,  f o r m i n g  at  80-85 ~ to the o r i g i n a l  
d i r ec t ion ) .  

F r o m  the data  j u s t  p r e s e n t e d  i t  follows that  when the wave d i f f rac t s  on the c r a c k ,  dyna mi c  s t r e s s e s  
a re  c r e a t e d  in  i ts  v i c in i t y .  These  s t r e s s e s  can  in i t i a te  the growth of the c r a c k ;  at the s a m e  t i m e , i n d e p e n -  
en t ly  of the m a t e r i a l  and i t s  s t r u c t u r e ,  the f r a c t u r e  takes  place in  a s t r i c t l y  def ined d i r e c t i o n .  

To exp la in  the change in  the d i r e c t i o n  of p ropaga t ion  of the c r a c k  when i t  i n t e r a c t s  with a s t r e s s  
wave,  we so lved a p lane  p r o b l e m  of the dynamic  theory  of e l a s t i c i t y  c o n c e r n i n g  s t r e s s  waves  which a r i s e  
i n  an in f in i te  pla te  with an angu l a r  cutout  ( s i m i l a r  to a c r a c k ;  F ig .  5) when an e l e m e n t a l  p lane  long i tud ina l  
wave of the f o r m  

= s ~ (t -- Oox + V - ~ )  (aOo = arc cos ~) 
s ~ (~,) = t when ~, > O, s ~ (~,) = 0 when ~, = 0 (2.2) 

fa l l s  at the t ip  of the cutout  at the i n s t an t  t = 0. 

Here  a is  the ve loc i ty  of the long i tud ina l  wave,  and 00 is  a cons t an t  which g ives  the d i r e c t i o n  of i n -  
c idence  of the wave.  
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The  wave  g i v e s  r i s e  to a d i f f r a c t i v e  d i s t u r b a n c e  which  at  the  t i m e  i n -  
s t an t  t f i l l s  a s e c t o r  of r a d i u s  a t  and angle  2u - a ,  and i s  d e s c r i b e d  by the 
l ong i t ud ina l  po t en t i a l  9 and the  t r a n s v e r s e  p o t e n t i a l  ~b. In  the  s o l u t i o n  of 
th i s  p r o b l e m ,  i t  was  a s s u m e d  tha t  a p lane  wave  at  s m a l l  ang les  of i n c i d e n c e  
does  not  g ive  r i s e  to  a d i s p l a c e m e n t  of p a r t i c l e s  on the  b o u n d a r y  in  a d i r e c -  
t ion  p e r p e n d i c u l a r  to the  s u r f a c e  of the  c r a c k .  Tha t  i s  to say ,  at the  i n -  
c i d e n c e  of the  l ong i tud ina l  wave  the r e f l e c t e d  t r a n s v e r s e  wave  i s  a b s e n t .  
T h e r e f o r e ,  the  fo l lowing  b o u n d a r y  cond i t i ons  w e r e  t aken :  

x x y =  0,  v =  0 w h e n g =  0 Tx" v '  = 0,  v '  = 0 w h e n g '  = 0 

I t  i s  n a t u r a l  to a s s u m e  tha t  the  d i f f r a c t i v e  d i s t u r b a n c e  wi th in  the  
s e c t o r  OABCDO (Fig .  5) i s  s o l e l y  l ong i tud ina l ,  i . e . ,  we t ake  ~ = 0. Then  
the  p r o b l e m  r e d u c e s  to  f inding wi th in  the  s e c t o r  OABCDO a long i tud ina l  
p o t e n t i a l  9 which ,  wi th in  the  r e g i o n  u n d e r  c o n s i d e r a t i o n ,  s a t i s f i e s  the  wave  
equa t ion  

d~q) 4-- d~y - -  t d2q) 
- -  ~ a dt~ (2.3) 

whi le  on the s i d e s  of the angle  AOD i t  s a t i s f i e s  the  equa t ion  

v ~ d q ~ =  0 
dg  (2.4) 

and on the s e c t o r  OABCD p a r t  of the  c i r c u m f e r e n c e  i t  s a t i s f i e s  the  e q u a -  
t i on  9 = c o n s t .  

The  b o u n d a r y  cond i t i ons  r x y  = 0 fo r  y = 0 a r e  s a t i s f i e d  a u t o m a t i c a l l y  when the  cond i t i ons  (2.4) a r e  
fu l f i l l ed .  Indeed ,  

"~xu = 2~ de~ - -  2p, d v 
- -  . dx  

T h e r e f o r e ,  ~'xy = 0 f o r  v = 0. 

The  s o l u t i o n  of th i s  p r o b l e m  in t e r m s  of  e l e m e n t a r y  func t ions  was  ob t a ined  in  [7]. The fo l lowing  e x -  
p r e s s i o n  was p r e s e n t e d  in  [8] fo r  the func t ions  

q~ (x,  y,  t) = R e  l__ I n  ( e -~ ' i  - -  z) (e - ~ i  - -  z) ~_ ~1 + "r~ 
a~ (e ~'~ -- z) (e ~i 7 z) 

" at ~a~t ~ ~'he~i 
= (~-~' )~ ,  i = 7 -  - \ - 7 -  t 
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Here r and 0 are the polar coordinates of points Within the sec tor  OABCDO 

z~ (~ -- a) T2= ~ -- 2g ~ n -- 71 

To investigate the s t r e ss  distribution within the region under considerat ion the components of the 
s t r e ss  state were determined from the following express ions:  

dx 2 \ dx ~ dy~/ 

" . dy ~ " ~dx~ dy2J 

d ~  
~xy ~ 2g dxdy 

The principal s t r e s ses ,  maximum shear  s t r e s ses ,  and the angles of inclinations of the principal 
s t r e s se s  to the coordinate axes were found f rom the expressions 

~l,~ = ~I~ (zx + %) • tf(zx - -  %)~ + 4 ~  ' 

I . 2~xv~ 
O1, ~ = ~ -  aro ~g ~x" % 

The quantities el, q2, rmax,  and 01, 2 were computed by means of an M-20 computer  for  the values 

a = t  ~ ~ = 0 , 2 , 3 , 5  ~ 

The following values were taken for the Lam~ constants (Plexiglas): 

= 1.96.10 TM, ~ = 4.54. I0 i~ 

When calculating the principal and maximum shear  s t r e s ses ,  the value of r was varied from 1 to 30 
mm in steps of 5 ram. The angle 0 was var ied  from 0 to 2~r - ~ in steps of 10 ~ and at var ies  f rom 0 to 
240 ~ in steps of 20 # s e c .  The curves  of equal shear  s t r e s se s  were constructed from the resul ts  of the ca l -  
culations (Fig, 6). 

A compar ison  of the ca lcula ted  data with the experimental  resul ts  showed that, for small  angles of 
incidence /3 -< 30 ~ of the wave, the pat terns of i sochromat ics  obtained by means  of c inematography coincide 
with the curves  plotted for equal shear  s t r e s se s .  This enables us to draw the conclusion that the s t r e ss  
diagrams plotted f rom the calculation resul ts  cor respond to the actual s t r e s se s  which ar ise  on the sides of 
the c rack .  

Calculations of the angle 0,  which charac te r i zes  the inclinations of the principal s t r e s ses  to the co -  
ordinate axes,show that it amounts to several  degrees .  Consequently, one of the principal s t r e s se s  coin-  
cides with the AO axis,which is paral lel  to the surface Of the main crack .  

As is seen from Figs.  4-6,  a concentrat ion of tensile s t r e s ses  is observed at the tip of the c rack .  At 
the same time the maximum s t r e s se s  a r i se  in the plane which is perpendicular  to the surface of the c rack .  
This resul t  is well confirmed by the pat tern of c rack  formation during experiments  (Fig. 4). 

Analyzing the theoret ical  and experimental  data, we can draw the conclusion that, in the process  of 
s t r e ss  formation at the c rack  tip, displacements of part icles  of the mater ia l  directed along the c rack  are 
of decisive value. As the angle of ent ry  of the wave increases ,  the component of longitudinal displacements 
decreases  and, accordingly,  the s t r e ss  concentrat ion at the c rack  tip decreases .  
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